
Commander Documentation
Release 0.1

D. S. Seljebotn

November 01, 2013

CONTENTS

1 The Commander User’s Guide 3
1.1 How to compute constrained realizations . 3
1.2 Joint Bayesian component separation and model estimation . 5
1.3 Build and installation of Commander . 6
1.4 Modelling signal components . 7

2 The Commander Library Guide 9
2.1 Architecture . 9
2.2 commander.sphere: Working with spherical data . 11
2.3 commander.memoize: Reusing results . 12

3 The Commander Developer’s Guide 15
3.1 Conventions . 15
3.2 Random number generation . 15

4 Indices and tables 17

i

ii

Commander Documentation, Release 0.1

The main purpose of Commander is to be the best CMB Gibbs sampler around. However, doing that depends on a
lot of building blocks, and it is also an aim to package those building blocks nicely enough so that Commander (as a
library) is applicable to other settings as well.

Contents:

CONTENTS 1

Commander Documentation, Release 0.1

2 CONTENTS

CHAPTER

ONE

THE COMMANDER USER’S GUIDE

1.1 How to compute constrained realizations

To set up a Commander run, use a Python script such as this one: https://gist.github.com/4065322

Some explanation. First, the usual imports:

from __future__ import division
import numpy as np
import os
import commander as cm

Then, set some Python variables. These are simply reused below and have no meaning by themselves, so we’ll cover
them when they are used:

output_filename = ’newmonodip-em7-%d.h5’ % os.getpid()
lmax = 500
lprecond = 50
eps = 1e-7
cache_path = ’cache’
seed = None # integer, or None for getting random seed from OS

First we must define our source of data, by constructing cm.SkyObservation objects. Constructing these objects does
nothing but basically keep track of a bunch of filenames, in particular, no data is loaded at this stage. To keep
things brief we use a Python loop but nothing stops you from unrolling the loop yourself to get Commander 1-style
configuration. Again, simply constructing these objects have no value by itself – it’s how they are used later that
matters.

Note that columns in FITS tables are referenced by a tuple (fits_filename, extension_no, column),
where column can be either an integer or a name. Also note that while in this case we opt for having Commander
do the necesarry data processing to get an RMS map you can of course provide an RMS map yourself by passing
TT_rms_map.

Environment variables (“$DATA”) and home directories (“~dagss”) are always expanded in any filenames.

observations = []
for name, da_list in [(’K’, [(’K1’, ’1.437 mK’)]),

(’Ka’, [(’Ka1’, ’1.470 mK’)]),
(’Q’, [(’Q1’, ’2.254 mK’), (’Q2’, ’2.140 mK’)]),
(’V’, [(’V1’, ’3.319 mK’), (’V2’, ’2.955 mK’)]),
(’W’, [(’W1’, ’5.906 mK’), (’W2’, ’6.572 mK’),

(’W3’, ’6.941 mK’), (’W4’, ’6.778 mK’)])]:
obs = cm.AverageSkyObservations(name, [

cm.SkyObservation(

3

https://gist.github.com/4065322

Commander Documentation, Release 0.1

name=da_name,
description=’Raw WMAP r9 data, from http://lambda.gsfc.nasa.gov’,
T_map=(’$DATA/wmap/n512/wmap_da_imap_r9_7yr_%s_v4.fits’ % name, 1, ’TEMPERATURE’),
TT_nobs_map=(’$DATA/wmap/n512/wmap_da_imap_r9_7yr_%s_v4.fits’ % name, 1, ’N_OBS’),
TT_sigma0=da_sigma0,
beam_transfer=’$DATA/wmap/n512/wmap_%s_ampl_bl_7yr_v4.txt’ % name,
mask_map=(’$DATA/wmap/n512/wmap_processing_mask_r9_7yr_v4.fits’, 1, 0),
lmax_beam=lmax)

for da_name, da_sigma0 in da_list])

Then, model the components and foregrounds. Currently the way to get mixing maps is by loading output from
Commander 1; we must then create a dict that maps observations to mixing map descriptors (by which we mean,
“FITS-tuples”). Create a function that does that (i.e. maps observations to the channel number that was used in the
Commander 1 run):

def get_mixing_maps(comp_num):
Create a mapping from observation to Commander 1 output file
d = {}
for idx, obs in enumerate(observations):

fitsfile = ’$DATA/wmap/mixing/mixmat_comp%02d_band%02d_k03999.fits’ % (comp_num, idx + 1)
d[obs] = (fitsfile, 1, 0)

return d

Set up some prior power spectrums for synchrotron and dust, using NumPy arrays. We refuse them to pick up and
monopole and dipole to avoid degeneracies in the system:

ls = np.arange(lmax + 1)
ls[0] = ls[1] # avoid NaN
prior_synch = 3e5 * ls**-2.1
prior_dust = 1e3 * ls**-1.8
prior_synch[:2] = 0
prior_dust[:2] = 0

Then set up our model; note that we can pass either a FITS file or a NumPy array as power_spectrum:

cmb = cm.IsotropicGaussianCmbSignal(
name=’cmb’,
power_spectrum=’$DATA/wmap/wmap_lcdm_sz_lens_wmap5_cl_v3.fits’,
lmax=lmax
)

dust = cm.MixingMatrixSignal(
name=’dust’,
lmax=lmax,
power_spectrum=prior_dust,
mixing_maps=get_mixing_maps(1)
)

synchrotron = cm.MixingMatrixSignal(
name=’synch’,
lmax=lmax,
power_spectrum=prior_synch,
mixing_maps=get_mixing_maps(2)
)

monodipole = cm.MonoAndDipoleSignal(’monodipole’, fix_at=[])

signal_components = [cmb, dust, synchrotron, monodipole]

4 Chapter 1. The Commander User’s Guide

Commander Documentation, Release 0.1

Again, constructing the ..Signal objects has no meaning by itself, they must be used; the signal_components list
is what is really important here.

Finally, construct a CommanderContext, which is responsible for figuring out the parallelization scheme to use and so
on:

ctx = cm.CommanderContext(cache_path=cache_path, seed=seed)

The cache_path should be a directory where results that are likely to be reused in other runs will be cached. The
seed is the seed for the random number generator which you can leave as None if you want a new one each time.

Finally:

realizations = cm.app.constrained_realization(
ctx,
output_filename,
observations,
signal_components,
wiener_only=False, # want samples
lprecond=lprecond,
eps=eps,
filemode=’w’)

This will do the actual work. Note that we pass in the lists of observations and signal_components, if we
didn’t, none of the above would do anything!

The resulting HDF file contains some information about what went into the run etc., plus the results:

• /power/<comp_name>: The power spectrum of the component

• /samples/<comp_name>: The coefficients in m-major ordering

The latter can be dealt with by using routines in commander.sphere.mmajor, or by using the command-line tool
to do an alm2map and dump to FITS file:

$ cmdr dumpmap --nside=512 myresults.h5 /samples/cmb 0 cmb.fits
$ cmdr dumpmap --nside=512 myresults.h5 /samples/synch 0 synch.fits

1.2 Joint Bayesian component separation and model estimation

The main goal of Commander is to perform joint Bayesian component separation and model estimation of the CMB
data (see http://arxiv.org/abs/0709.1058). Here we describe everything that can go into a Commander analysis of CMB
data; of course, one is free to sample only a subset of the parameters in a given run.

1.2.1 Input

Data

The input is a number of maps, indexed by i, each containing the following information:

Temperature and polarization maps di: In the HEALPix pixelization.

Noise properties Ni: Currently supported: RMS maps (independent noise between pixels)

Mask mi: Internally the mask is treated as part of N−1
i

Beams Bi: Currently supported: Symmetric beams; input the spherical harmonic transfer function. Todo: FEBeCOP
beam

1.2. Joint Bayesian component separation and model estimation 5

http://arxiv.org/abs/0709.1058

Commander Documentation, Release 0.1

Frequency band information f(ν): Either [νmin, νmax] or Fi(ν)

Priors

1.2.2 Output

ξ2 map: ...

Instrument parameters

Monopole, dipole: One per detector map i. Choose to arbitrarily fix monopole at some frequencies.

Bandpass shift:

Gain gi:

Noise calibration factor τi: Multiplicative factor with τi

Foreground parameters

Dust Adpf(ν;T, e)gν: Priors on all parameters.

Synchrotron, Asp(
ν
νref

β+C log(ν
νref) :

Free-free, Afp(ν
νref

βf Prior: N(−2.15, 0.022)

CO Acpαν Specifically, α217, α353

CMB model parameters

Currently only power spectrum estimation is supported:

CMB power spectrum C`, σ` : Standard inverse-Wishart

1.3 Build and installation of Commander

1.3.1 Dependencies

• NumPy

• SciPy

• Cython

• PyFITS

• libpsht and psht4py

•

6 Chapter 1. The Commander User’s Guide

Commander Documentation, Release 0.1

1.4 Modelling signal components

Every signal component on the sky (CMB, synchrotron, free-free, etc.) comes with two classes to implement them.
The first one, with the suffix Signal, is a model description:

synchrotron_info = cm.SynchrotronSignal(
nu_ref=nu_ref, lmax=lmax,
beta_prior=(-2.0, 1.0), # mean, std. dev
)

The model description is immutable (carries no state), serializable, hashable, and in general does no work on construc-
tion.

Given a model description of a signal, one can create the Sampler for it, typically attached to a Chain instance:

Get descriptions of parameters to sample. This can depend on resolution
of the observations
synchrotron_params = synchrotron_info.get_parameters([obs1, obs2])

Now, we can construct a chain involving these parameters
chain = cm.Chain([obs1, obs2], synchrotron_params)

Finally, create an instance of cm.signal.synchrotron.SynchrotronSampler
attached to the given chain
synchrotron_sampler = cm.create_sampler(chain, synchrotron_info)

The sampler is stateful (may store precomputations necesarry for the sampling process etc.). On construction the
sampler may read out parameters that are relevant for it from the chain argument passed in.

The dependencies between the constructed objects are as follows:

synchrotron_sampler

synchrotron_info

Get parameters from

chain

Read s tate from, s tore samples to

1.4. Modelling signal components 7

Commander Documentation, Release 0.1

8 Chapter 1. The Commander User’s Guide

CHAPTER

TWO

THE COMMANDER LIBRARY GUIDE

2.1 Architecture

Various aspects of Commander, ordered roughly from high-level to low-level layers.

A design goal of Commander is that the lower-level layers should be useful in their own right without involving the
abstractions in the higher layers in any way.

This illustration is not finished:

Application/driver routine layer

Modelling layer

Parameter samplers

Parallelization context

Linear operators Chain state and storage

2.1.1 Application/driver routine layer

The package commander.apps contain command-line applications and utilities. The most basic of these can be
used directly, and are also available through scripts in /bin.

However, some applications require much more configuration than what can be conveyed on the command-line. In
these cases, one calls the application routines while passing in something from the modelling layer which effectively
acts as configuration (described below). Assuming [V1, V2] and [cmb, synchrotron, <...>] are objects
from the modelling layer, one might invoke the CMB Gibbs sampler like this:

cm.apps.cmb_gibbs_sampler_command_line(
observations=[V1, V2],
signal_components=[cmb, synchrotron, free_free, monodipole],

9

Commander Documentation, Release 0.1

<snip more options>
chain_count=10,
sample_count=5000,
output_filename=’wmap-9r-analysis.h5’

)

These application routines typically have two versions: One with and one without a ...command_line suffix.
The command_line version will in addition to the provided options parse sys.argv for additional options, and in
general provide more defaults.

Full example: See scripts/wmap_gibbs_sampler_runner.py.

2.1.2 Modelling layer

This layer is the primary API to set up the problem that Commander should solve. The objects are all entirely
descriptive and take few or no actions on their own. An example:

V1 = cm.SkyObservation(
name=’V1’,
T_map=(’$WMAPPATH/wmap_da_imap_r9_7yr_V1_v4.fits’, 1, ’TEMPERATURE’),
...
)

cmb = cm.IsotropicGaussianCmbComponent(
power_spectrum=’$WMAPPATH/wmap_lcdm_sz_lens_wmap7_cl_v4.dat’,
lmax=1500)

synchrotron = cm.SynchrotronComponent(nu_ref=60, lmax=1500)

Here, V1 and cmb are descriptors, their role is to carry around information/configuration, not to do anything. The
constructors will resolve the filenames to absolute paths (so that a later os.chdir does not alter the contents), but
no attempt is made to load any data.

While the constructor is not allowed to do anything intensive, model objects are allowed to provide methods that
do loading or computation. The loading/computation will typically depend on the parallelization and so require a
CommanderContext. E.g.:

ctx = cm.CommanderContext(my_mpi_communicator)

load single map
map = V1.load_map(ctx)
load many maps in parallel, more efficient
map_lst, rms_lst, mask_lst = cm.load_map_rms_mask(ctx, [V1, V2])

Constructing the mixing operator of synchrotron requires some
computation (integrating over the bandpass of the observation several times
and compute a spline)
M_V1_sync = synchrotron.get_mixing_operator_sh(ctx, V1, beta=-2.2, C=2.12)

2.1.3 MCMC chains

The Chain and MemoryChainStore / HDF5ChainStore‘ classes cooperate to provide the abstractions for running an
MCMC/Gibbs chain. They don’t do any sampling by themselves, but primarily allow a) persistence of chain, and b)
passing around information about current chain state. By using these classes the boilerplate is greatly reduced from a
typical MCMC loop, while still allowing for programming the chain in the good old imperative manner. See Chain
documentation (TODO).

10 Chapter 2. The Commander Library Guide

Commander Documentation, Release 0.1

2.1.4 Linear operators

Commander uses the oomatrix library to deal with linear algebra. The library allows for plugging in your own
linear operators, and many such operators have to be provided by Commander, e.g., spherical harmonic transforms
and efficient component mixing. See scripts/simple_constrained_realization.py for an example of
constrained realization being quickly implemented using only the linear operators.

2.1.5 Parallelization context

The CommanderContext (typically named ctx in code) is responsible for storing the parallelization scheme (and pro-
vide good defaults), and is conventionally passed as the first argument to many routines. Parallelization is coordinated
by passing around the CommanderContext object. E.g., in the following code, it is assumed that the call is done
collectively with the same arguments, and after the call map only contains the rings of the local rank:

map = cm.load_map(ctx, V1)

Note that it is not allowed to alter the arguments to load different bands on each rank:

map = cm.load_map(ctx, observations[comm.Get_rank()])

Rather, it is the responsibility of the CommanderContext to coordinate which map lives where:

THIS WAY OF PARTITIONING IS NOT IMPLEMENTED, and may not be, the
point is just for now to provide an example of the
responsibilities of CommanderContext
ctx = CommanderContext(comm=comm_with_two_ranks,

observations=[V1, V2],
partition_by_observation=True)

map_lst, rms_lst, mask_lst = cm.load_map_rms_mask(ctx, [V1, V2])
Now, rank 0 contains all V1 data and rank 1 contains all V2 data

2.2 commander.sphere: Working with spherical data

The commander.sphere package contains utilities for working with spherical data. The tools here are independent
of the rest of Commander; the rest of Commander is heavily based on the data format and conventions present here.

2.2.1 Spherical harmonic conventions

Ordering scheme

Across Commander we use m-major ordering with interleaved positive and negative m; i.e., the coefficients (`,m)
are ordered first by |m|, then by `, and finally by ordering the positive m before the negative m.

Examples: For all m and 0 ≤ ` ≤ 2, the coefficient order is

[a0,0, a1,0, a2,0, a1,1, a1,−1, a2,1, a2,−1, a2,2, a2,−2] ,

whereas for storing only 3 ≤ ` ≤ 4 one gets

[a3,0, a4,0, a3,1, a3,−1, a4,1, a4,−1, a3,2, a3,−2, . . . a4,4, a4,−4] .

The routines commander.sphere.mmajor.lm_to_idx() and commander.sphere.mmajor.idx_to_lm()
can translate between array indices and (`,m).

2.2. commander.sphere: Working with spherical data 11

Commander Documentation, Release 0.1

Spherical harmonic transforms process the coefficients one m at the time, making m-major ordering the most efficient
one for SHTs. Memory locality aside, it is crucial that all coefficients for a given m reside on the same node.

In various computations a`,m and a`,−m are often related and treated together, so it makes sense to keep them together.
When interleaving in this particular way with positive m first, converting between half-complex and real spherical
harmonic formats is just a matter of in-place coefficient scaling with no reordering (except possibly for $m=0$). In
the half-complex format, a`,m is seens as the real component and a`,−m the imaginary.

We avoid any padding. Padding could have made for more convenient indexing, but is impractical in linear algebra, as
one is forced to also pad matrices accordingly. Also it becomes easy to mis-count the number of degrees of freedom
for vectors and so on.

Real vs. complex spherical harmonics

We deal with real fields on the sphere, and with the traditional complex definition of spherical harmonics we have
a`m = (−1)ma`−m and the negative m are redundant. However, they must still be included in many computations
(you can not stack only the non-negative m in a vector and do linear algebra with the result).

Therefore, to make sure that linear algebra with spherical harmonic vectors always work out well (and to avoid a very
significant speed penalty), we mainly use real spherical harmonics, related to complex spherical harmonics by the
equations

aR`,0 = aC`,0 (2.1)

aR`,m =
√
2Re(aC`,m) for m > 0(2.2)

aR`,m =
√
2Im(aC`,−m) for m < 0(2.3)

(2.4)

Algebraically, the transformation from complex to real spherical harmonics is an orthonormal transformation.

Warning: While the conversion of vectors is trivial, the conversion of matrices between the real and complex
spherical harmonic bases is a bit less trivial, since one needs to apply the basis change operator on both sides of
the matrix. In the case of sparse matrices it may even sometimes be better to stick with the full expanded complex
vectors, as the number of non-zero elements are smaller.

When it comes to storage, we do not define any half-complex format (i.e., where one stores only non-negative m), as
one can simply read the real coefficients and correct for the

√
2 on the fly. Both real and complex storage formats are

in use, both using the m-major ordering described above with either real or complex coefficients.

2.2.2 Reference

2.3 commander.memoize: Reusing results

Perhaps the primary reason to use memoization is the convenience during debugging to save computational results to
disk (even if memoization is often turned off for cluster runs).

But another reason for memoization is to structure the program. If a temporary result is memoized, there’s no need to
explicitly pass it around:

V = SkyObservation(name=’V’, source=’WMAP7yr’, ...)
x = compute_frobnification(V) # uses square of RMS map inside
y = compute_bartification(V) # also uses square of RMS map inside

12 Chapter 2. The Commander Library Guide

Commander Documentation, Release 0.1

In “traditional” programming, one should (and do, if the computation time is large) figure out everything that the two
functions share in terms of temporary result, compute that in the caller, and pass it in. But that can become unwieldy,
and when it does, memoization is your friend.

Note: A big part of what’s memoziation is used for in Commander is simply to read in the input data.

Warning: Use memoization sparingly. (Unless until we get a better handle on it.) The problem doesn’t really
disappear, because one now needs to figure out when to release the results from the memoization cache, which
can’t be done perfectly by any heuristic (and at the time of writing we don’t have any heuristics but just fill up the
store forever).

2.3.1 Core idea

Memoized results are always associated with an explicit MemoContext (of which CommanderContext is a sub-
class). You annotate a function/method with @memoize/@memoize_method:

from commander.memoize import memoize, memoize_method

class MyContext(MemoContext):
@memoize_method(’description_of_result’, tags=[’disk’])
def method(self, ctx, arg): ...

@memoize() # default name of result is ’compute_foo’
def compute_foo(ctx, arg): ...

The ctx argument is special, and is where the cached results are stored.

For this to work,

• all input arguments must support hashing

• the result must support being made immutable

The tags can be arbitrary strings, which are then picked up on by the memoization policies. The only one currently
supported is "disk" which causes it to be stored to disk cache (if disk cache is enabled).

Note: The reason for the separate @memoize_method is that the context is the second argument rather than the
first. In subclasses of MemoContext one should use @memoize_in_self.

2.3.2 Hashing protocol

TODO

2.3.3 Immutabilification

The results from a memoized function will be converted to read-only (or if this is not possible, such as a with a dict,
an exception will be raised). The conversion process is recursive through lists.

If the type is not known, the memoization will try to call an as_immutable(self) method to convert the result.

2.3. commander.memoize: Reusing results 13

Commander Documentation, Release 0.1

2.3.4 Comparison with joblib

The Joblib library is intended to enter your own (presumably dynamic, interactive) workflow with a minimum of
intervention. Therefore it, e.g., checks that the source code has changed (and if so invalidates the cache for the
function), tries to hash almost any input (by running it through a hashing “pickler”), and so on. A typical joblib
example is:

@cache
def f(arr): return fft(arr**2) # arr is a NumPy array

On the other hand, commander.memoize is very explicit. It will not try to hash NumPy arrays for instance, instead
you typically use descriptors which you use to fetch the data . Typical example:

@memoize(, tags=[’disk’])
def f(ctx, map_descriptor):

arr = ctx.get_foo(map_descriptor)
return fft(arr)

14 Chapter 2. The Commander Library Guide

CHAPTER

THREE

THE COMMANDER DEVELOPER’S
GUIDE

3.1 Conventions

• Every module should start with from __future__ import division

• Commander imported as cm, NumPy as np, SciPy as sp, oomatrix as om, matplotlib.pyplot as plt

3.2 Random number generation

Each program typically need two RNGs: One that is guaranteed to be different between ranks (given the variable name
nc_rng, for non-collective RNG), and one that has the same seed for every rank and is always called collectively
(called c_rng).

15

Commander Documentation, Release 0.1

16 Chapter 3. The Commander Developer’s Guide

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

17

	The Commander User's Guide
	How to compute constrained realizations
	Joint Bayesian component separation and model estimation
	Build and installation of Commander
	Modelling signal components

	The Commander Library Guide
	Architecture
	commander.sphere: Working with spherical data
	commander.memoize: Reusing results

	The Commander Developer's Guide
	Conventions
	Random number generation

	Indices and tables

